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Abstract 
Recent improvements are presented for phonetic decoding of 
continuous-speech from ultrasound and optical observations of 
the tongue and lips in a silent speech interface application. In a 
new approach to this critical step, the visual streams are 
modeled by context-dependent multi-stream Hidden Markov 
Models (CD-MSHMM). Results are compared to a baseline 
system using context-independent modeling and a visual 
feature fusion strategy, with both systems evaluated on a one-
hour, phonetically balanced English speech database. Tongue 
and lip images are coded using PCA-based feature extraction 
techniques. The uttered speech signal, also recorded, is used to 
initialize the training of the visual HMMs. Visual phonetic 
decoding performance is evaluated successively with and 
without the help of linguistic constraints introduced via a 2.5k-
word decoding dictionary.   
 
Index Terms: silent speech interface, visual speech 
recognition, multi-stream modeling 

1. Introduction 
Designing a device to allow speech communication without 
the necessity of vocalizing has become a challenge in its own 
right in the speech research community. This “Silent Speech 
Interface”, or SSI, could be used to preserve the privacy of 
conversations, communicate in silence-restricted or high 
background noise environments, or for silent, hands-free data 
transmission during a security operation. Further applications 
are possible in the medical field, for example to assist 
laryngectomized patients, where the SSI would be used as an 
alternative to the electrolarynx; to oesophageal speech, which 
is difficult to master; or to tracheo-oesoephageal speech, 
which requires additional surgery. Different types of sensors 
can be envisaged in order to build an SSI. A speaker may for 
example produce airflow in his vocal tract and capture the 
resulting “murmur” with a stethoscopic microphone as in [1] 
and [2]. Others approaches, based on completely non-acoustic 
features have also been proposed, as for example in [3] where 
electromyographic electrodes placed on the speaker’s face 
record muscular activity, or in [4] where magnets glued to the 
tongue and lips are tracked by sensors incorporated in a pair of 
eyeglasses. In our approach, articulator activity, mainly of the 
tongue and lips, is captured by a non-invasive multimodal 

imaging system composed of an ultrasound transducer placed 
beneath the chin and an optical camera in front of the lips [5].  

In [6], we presented a framework for a phonetic vocoder 
driven exclusively by streams of visual observations, using an 
audio-visual unit dictionary that associates acoustic utterances 
with their visual phone equivalents. In the first stage of the 
system, the visuo-phonetic decoder finds the most likely 
phonetic targets for a given test sequence of visual data. These 
targets then constrain the selection in the dictionary of the 
sequence of units that best matches the input test data. In such 
a corpus-based approach, the quality of the synthesis depends 
strongly on the performance of the phonetic decoding stage, 
whose robustness must therefore be maximized. To that end, 
more sophisticated HMM-based modeling techniques have 
been recently tested. The two improvements presented and 
evaluated in the present paper are: the introduction of context-
dependency in the modeling of the visual phones; and the use 
of a multi-stream approach to model jointly the ultrasound and 
the optical data streams. Systems derived from this approach 
will be compared to a baseline decoder, similar to that used in 
[6], which uses context-independent phonetic models and a 
feature fusion strategy. Because it is not a priori feasible to 
disambiguate all phonetic configurations only from tongue and 
lip observations, linguistic constraints can also be introduced 
to help the phonetic decoding, via for instance, a restriction on 
the allowed vocabulary. We therefore also evaluate our 
systems on both an unconstrained phonetic decoding task and 
on a more restricted one.  

The development of the visuo-phonetic decoding baseline 
system is detailed in Section 2, where data acquisition and pre-
processing, visual feature extraction techniques and evaluation 
protocols are described. Section 3 addresses the 
implementation and evaluation of the context-dependent visual 
phonetic decoder. In section 4, the multi-stream modeling 
approach is introduced and evaluated. Also in that section, the 
performance of the final system including both context 
dependent modeling and the multi-stream approach is 
discussed. 

2. Baseline Visuo-Phonetic Decoder 

2.1. Data acquisition and pre-processing 

Ultrasound data is recorded using the Vocal Tract 
Visualization Lab HATS system [7]. In this setup, the 
transducer is locked in a fixed position beneath the chin, and 



the head immobilized. An acoustic standoff is used to allow 
mandible motion so that speech production is relatively 
undisturbed. Two standard video cameras record both profile 
and frontal views of the speaker’s lips, and a microphone 
captures the uttered speech signal. The three video streams 
(two cameras plus ultrasound) and the audio signal are merged 
into the same video sequence using an analog video mixer, 
which limits the frame rate of the video data to 29.97 Hz 
(NTSC format). A typical image recorded by this acquisition 
system is shown in figure 1. 

 

 

Figure 1: An ultrasound vocal tract image in the mid-
sagittal plan with embedded lip frontal and lateral 
view. Dashed white lines represent tongue and lip 
regions of interest. 

The text material, chosen for the purposes of diphone-based 
concatenative synthesis, is based on the first 1020 sentences of 
the CMU Arctic corpus [8], read by a native speaker of 
American English instructed to speak as neutrally as possible. 
After cleanup of the recordings, the database contains 61 
minutes of speech contained in 109553 bitmap frames. Audio 
files are sampled at 16 kHz.  

2.2. Visual feature extraction 

Regions of interest (ROI) selected in ultrasound and optical 
images, as shown in figure 1, are first resized to 64x64 pixels. 
Speckle noise typical of ultrasound images is reduced using 
the anisotropic diffusion filter described in [9]. It is suggested 
in [10] that a frontal view of the lips provides more 
articulatory information than a profile; thus, although both are 
present in our database, we chose to use only the frontal view 
in this study. The “EigenTongues” [11] decomposition 
technique is subsequently used to encode each ultrasound 
frame. In this method, the vocal tract configuration is 
interpreted as a linear combination of standard configurations, 
the “EigenTongues”, obtained by performing a Principal 
Component Analysis (PCA) on a phonetically balanced subset 
of frames. A similar technique is used to encode frontal 
images of the lips (“EigenLips”). The numbers of projections 
onto the set of EigenTongues/EigenLips used for coding are 
obtained empirically by evaluating the quality of the image 
reconstructed from its first few components; typical values 
used on this database are 30 coefficients for each of the two 
streams. In order to be compatible with a more standard frame 
rate for speech analysis, the EigenTongues/EigenLips 
coefficient sequences are oversampled from 30 Hz to 100 Hz 
using linear interpolation. In this baseline system, 
EigenTongues/EigenLips coefficients, together with their first 
and second derivatives, are concatenated into a single “visual 
feature vector” in a feature fusion strategy. 

2.3. HMM-based modeling  

The modeling of visual feature sequences by continuous 
HMMs requires their initial temporal decomposition at the 
phonetic level. As visual and audio modalities have been 
recorded synchronously, this initial segmentation can be 
derived from the labeling of the acoustic signal. This task is 
performed using a forced alignment procedure with an initial 
set of 40 acoustic HMMs trained on the acoustic component of 
the recorded database. The acoustic wave of each recorded 
sentence is parameterized by 12 Mel-frequency cepstral 
coefficients (MFCC) with their energies and first and second 
derivatives. In this study, all the procedures involving HMM 
manipulations are done using the HTK front-end [12]. After 
initialization, 40 left-to-right (monophones), 5-state (3 
emitting states), continuous visual HMMs (with diagonal 
covariance matrices) are first trained separately using the 
standard Baum-Welch re-estimation algorithm. Then, 
embedded training, during which the number of Gaussians per 
state is incrementally increased, is used to refine the models 
and the temporal segmentation of the visual stream. In the 
testing stage, phonetic decoding is performed using the 
standard “Token Passing” algorithm, which finds the optimal 
path through an HMM network. Because some very important 
sources of information are missing in the visual data, such as 
nasality and the voiced/unvoiced flag, linguistic constraints 
can be introduced to help the phonetic decoding. With that in 
mind, we introduce two decoding scenarios. In the first, 
considered “unconstrained”, the structure of the decoding 
network is a simple loop in which all phones loop back to each 
other. In the second, or “constrained” scenario, the phonetic 
decoder is forced to recognize words contained in the CMU 
Arctic sentences. In that case, the decoding network allows all 
possible word combinations which can be built from a 2.5k 
word dictionary. No statistical language model is used in the 
present study.  

The 1020 sentences of the recorded database are divided 
into 34 lists of 30 sentences. In order to increase the statistical 
relevance of the speech recognizer performance, a jackknife 
(leave-one-out) technique [13] was employed, in which each 
list was used once as the test set while the other 33 lists 
composed the training set. Two test lists were however 
excluded from this jackknife procedure to be used as a 
validation set for the optimization of two “hyper” parameters: 
the model insertion penalty; and the number of Gaussians per 
state of the visual HMMs. For the baseline system, the optimal 
number of Gaussian per state was found to be 32. 

For each phone class, a representative measure P of the 
recognizer performance is defined as: 

  (1) 

where N is the total number of phones in the test set, S the 
number of substitution errors, D deletion errors, and I insertion 
errors. Section A of table 1 presents the performance of the 
baseline visuo-phonetic decoder in the two decoding 
scenarios. 

3. Context-Dependent Modeling 
Articulatory features such as those derived from the recorded 
images of the tongue and lips are naturally sensitive to context 
effects such as co-articulation and anticipation. Introducing 
context-dependency in the modeling of visual features 
sequences should therefore increase the robustness of the 
visuo-phonetic decoding. In this study, we propose to model 
visual triphones by adding information about left and right 



contexts to the phone models. Traditionally, triphone modeling 
presents several practical issues. Since many triphones have 
only a few occurrences in the training data, the accurate 
estimation of their corresponding HMM parameters is 
difficult. Also, many triphones may be missing in the training 
corpus, especially in a relatively small dataset such as the one 
used in this study. To overcome these issues and make visual 
triphone training viable, a tree-based state-tying strategy is 
adopted. Using the procedure in [14], a binary decision tree is 
constructed for each state of each phone, in order to cluster 
together all of the corresponding states of all of the associated 
triphones. The decision tree recursively partitions this pool of 
states by querying left/right contexts. States reaching the same 
leaf node are considered similar enough to be tied together.  

The “yes - no” questions associated with the tree nodes are 
usually based on phonetic knowledge such as backness and 
height for vowels, place and manner of articulation for 
pulmonic consonants, etc. A typical question attached to a 
node of the decision tree might be, “Is the previous phone (left 
context) a bilabial consonant?”. However, as tongue and lip 
configurations are explicitly represented here, we propose to 
use a gesture-based approach to build the contextual questions. 
A feature set in which tongue body, tongue tip, and lip 
configurations are described explicitly, using the articulatory 
phonology theory introduced in [15], is used. With this 
description, the articulatory configuration corresponding to the 
phone [sh], for instance, would be characterized as a 
configuration where the lips are in a default “labial” position, 
the tongue tip in the “palato-alveolar” region, “tongue body” 
in the “palatal” region, etc. A typical contextual question on 
the decision tree built from this feature set would be, “Does 
the next phone (right context) require the tongue body moving 
to the palatal region?” However, although present in the 
feature set, no questions based on the glottal activity (which is 
meaningless in a silent speech context) or on the velum (which 
is not visible in an ultrasound image) was built.   

To build the context-dependent visual phonetic decoder, a 
set of 40 visual HMMs (monophones) is first trained using the 
same procedure as for the baseline system. These monophone 
models are then cloned to initialize their corresponding untied 
triphones. As each training set of the jackknife procedure 
contains approximately 8500 distinct triphones with, on 
average, only 4 occurrences apiece, state tying appears to be 
essential. After the tree-based clustering procedure, the total of 
25500 states (8500 x 3 emitting states) is reduced roughly to 
1800 clusters (~7% of the original number of states). Tied-
state models are then refined by incrementally increasing the 
number of Gaussian mixture components up to an optimal 
number which was found to be 4. Finally, models for unseen 
triphones are generated; decision trees are asked to find which 
combination of already trained state models is the most 
adapted to represent the context of a given unseen triphone. At 
the end of the training stage, a set of 67200 visual triphone 
models (all possible triphones and biphones built from a 40 
element phone set) is available for decoding. As for the 
baseline system, decoder performance is evaluated on both 
unconstrained (free phonetic decoding) and constrained (using 
a 2.5k word dictionary) scenarios, as shown in sections A and 
B of Table 1. Compared to the baseline system, performance 
of the context-dependent system is significantly improved in 
both decoding scenarios, with improvements of 4.9% 
(unconstrained) and 3.2% (constrained) respectively. A more 
detailed analysis of the remaining decoding errors is given at 
the end of the next section. 

4. Multi-Stream vs. Feature Fusion 
As in audio-visual speech recognition, two approaches can be 
envisioned to integrate tongue and lip data streams in an 
HMM-based phonetic decoder: “feature fusion” which was 
adopted in the baseline system; and “(classifier) decision 
fusion”. As described in [16], different strategies can be used 
to combine modalities at the classifier level. In this work, an 
“early integration” strategy based on state-synchronous Multi-
Stream Hidden Markov Models (MSHMM, [17]) is used to 
model tongue and lip feature sequences. In a MSHMM, each 
stream has, for each state, its own Gaussian mixture and thus 
its own emission probability density function. Given a “tongue 
(T) and lips (L)” visual observation vector , 
the resulting emission likelihood  for state j is expressed as:  

 (2) 

 
where is the value at o of a Gaussian mixture with 

mean µ and covariance Σ, Ms the number of mixture 
components and  are the weight parameters 
discussed below. In this equation, stream components are 
forced to be state-synchronous and thus asynchrony between 
tongue and lips movements, well described in [18], is not 
taken into account. However, since asynchrony is often 
correlated with phonetic context, the use of context-dependent 
models could potentially compensate this phenomenon. The 
combination of the stream likelihoods also requires the 
definition of the weight parameters  and . Widely 
discussed in the context of audiovisual speech recognition 
(AVSR) [16], the estimation of stream exponents can be 
achieved either by measuring stream reliabilities using an SNR 
or a “degree of voicing” criterion for the audio modality, 
which is not possible here, or by maximizing system 
performance on a validation data set. In this initial test of 
multi-stream modeling of tongue and lip data, a very simple 
optimization procedure is adopted: only class-independent 
weights are used, and system performance is evaluated on a 
validation set for different pairs of weights, which we 
constrain to sum to one. As expected, the tongue carries the 
most important part of the accessible articulatory information, 
and the optimal values found for tongue and lip feature 
streams are 

� 

λT = 0.7 and

� 

λL = 0.3.  
In our procedure, a multi-stream phonetic decoder using 

context-independent models is first trained using the same 
procedure as for the baseline system. Its performance is shown 
in section C of Table 1. Compared to the baseline system, the 
multi-stream approach brings a 2% improvement in the 
unconstrained decoding scenario (with fewer substitution and 
insertion errors but more deletion errors), and a 3,7% 
improvement in the constrained one. Also, when the multi-
stream approach is combined with context-dependent 
modeling, as in the “final” system whose performance is 
shown in section D of Table 1, the performance improvement 
is about 8% higher than that of the baseline system. While still 
not ideal, these results are nonetheless promising and 
demonstrate the relevance of the two new adopted strategies. 

Quite naturally, most of the substitution errors are made on 
phones with similar tongue and lip gestures, such as 
{[p],[b],[m]}, {[t],[d],[n]}, {[f],[v]}, {[k],[g],[ng]}, 
{[ch],[jh]}, {[sh],[zh]} and {[th],[dh]}. In fact, if we consider 
these phone groups as equivalence classes, in which within-



group confusions are not counted as errors, the performance of 
the final system in the unconstrained scenario can be further 
increased to 73,2% (78% for the constrained decoding 
scenario). Most of the remaining substitution errors are due to: 
vowels confused with the phone [ah], which is, in continuous 
speech, certainly a consequence of the vowel reduction effect; 
diphthongs matched sometimes with one of their vowel 
components; and dental and alveolar consonants, which are 
difficult to image with ultrasound because the apex (tongue 
tip) may be hidden by the acoustic shadow of mandible. Some 
of these mismatches in the phonetic decoding would not 
necessarily lead to unintelligible synthesis; some 
psychoacoustic effects could potentially also be used to 
advantage. The relatively high number of deletion and 
insertion errors, however, remains problematic, and will 
continue to be addressed in future work. 

5. Conclusions 
In order to improve the visuo-phonetic decoding stage of a 
planned ultrasound-based silent speech interface, the modeling 
of tongue and lips feature sequences using multi-stream and 
context-dependent HMMs has been proposed. On an open-
vocabulary continuous speech decoding task, the system is 
able to correctly identify 65,6% of the phones from visual 
information only. When the vocabulary is limited to 2.5k 
words, the performance increases to 74,7%. Compared to a 
baseline system based on context-independent models and a 
feature fusion strategy, this new approach has led to a 8% 
absolute performance improvement. To reduce the remaining 
decoding errors (mainly deletions and insertions), the 
recording of visual data at a higher frame rate and the use of a 
statistical language model are currently under study.  
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Table 1. Performance of the different visuo-phonetic decoders. Δ is the 95% confidence interval, “CI”, “CD”, 
“Unconst.”, and “Const.” stand for context-independent and context dependent models, unconstrained and constrained 

decoding scenarios, respectively. 

A B C D 

Baseline Decoder 
CI – Feature Fusion 

Context-dependent Decoder 
CD – Feature Fusion 

Multi-Stream Decoder 
CI – MSHMM 

Context-dependent  
& 

Multi-Stream Decoder 
CD - MSHMM 

 

Unconst. Const. Unconst. Const. Unconst. Const. Unconst. Const. 
P 57,7% 67,4% 62,6% 70,6% 59,5% 71,1% 65,6% 74,7% 
Δ 1.0% 1.0% 1,0% 1,0% 1.0% 1,0% 1.0% 1.0% 
D 6043 4666 3452 3196 7531 5174 4294 3964 
S 7077 5398 7080 4799 5897 4157 6279 3613 
I 1568 1270 2451 2210 658 696 1397 1232 
N 34693 34693 34693 34693 34693 34693 34693 34693 

    


